


Continue































Bidentate ligands are Lewis bases that donate two pairs ("bi") of electrons to a metal atom. Bidentate ligands are often referred to as chelating ligands ("chelate" is derived from the Greek word for "claw") because they can "grab" a metal atom in two places. A complex that contains a chelating ligand is called a chelate. Some Bidentate Ligands are ethylenediamine(en)acetylacetone ion(acac) phenanthroline(phen)oxalate ion(ox) = Ni = N = H = Cl ethylenediamine is a neutral molecule containing two N atoms that can each donate a pair of electrons to a metal atom.Ni(en)2Cl2In this complex, two ethylenediamine molecules are bonded to the Ni atom. The coordination number of 6 results in an octahedral structure. = Ni = C = O oxalate ion (ox)Oxalate ion is a bidentate ligand even though it contains four O atoms which have lone pairs of electrons.[Ni(ox)2]2- In this complex, two oxalate ions are bonded to the Ni atom. The coordination number of 4 results in a square planar structure. = Rh = C = O oxalate ion = Ni = Cl phenanthroline (phen)phenanthroline is a neutral molecule containing two N atoms that can each donate a pair of electrons to a metal atom.[Rh(phen)2]2- In this complex, two phenanthroline molecules are bonded to the Rh atom. The coordination number of 6 results in an octahedral structure. = Cr = C = H = O acetylacetone ion (acac)Acetylacetone ion contains two O atoms which allow this ligand to function as a bidentate ligand.Cr(acac)3In this complex, three acetylacetone ions are bonded to the Cr atom. The coordination number of 6 results in an octahedral structure. Applications ZUD cleanser, which contains oxalic acid, is used to remove rust deposits. Rust reacts with oxalic acid to produce a colorless, water-soluble complex ion (i.e., [Fe(C2O4)3]3-). In this complex, three oxalate ions are bonded to the Fe atom. The coordination number of 6 results in an octahedral structure. Its time to prepare for your A-level chemistry exam. Dont be daunted by the volume of material you need to go through or anything you may not know 100% yet, that's where we at A-level Chemistry come in with loads of revision notes of your coursework no matter if its AQA, OCR or EdExcel. We've got revision notes that will help you familiarize yourself with the major themes and topics that tend to come up in the exams so you'll feel prepared and confident before you enter the exam hall. To make the most of revision notes, whether you're making your own or using ours, keep reading to learn top tips that will facilitate deep learning. Lets get started: When revising, make sure you've allocated enough time to go through all your coursework at least four times. Without proper planning, you could end up skimming or skipping sections, losing sleep and stressing yourself out. Create a timetable that will give you sufficient time to dedicate to each topic and stick to it. Effective retention and recall are based on your ability to create strong associations. If you rely on only one way to recall information, if you hit a mental block you're unable to retrieve it. By adding things like colour, symbols, diagrams, keywords, patterns or doodles, you create much stronger connections in your brain and multiple routes to the same information. A word of caution though - dont fall into the procrastination trap of making your revision notes the prettiest in the world. Do you know what's necessary to remember, then move on. While on the topic of procrastination, dont give in to distractions or urges to suddenly tidy your room and pair all of your socks. Procrastination often comes from a deeper place. Are you avoiding revision because you feel overwhelmed? Are you afraid of performing badly in your exam? Is it because you're intimidated by how much you still need to learn? Are you bored? Address where your urge to procrastinate is coming from and then get back to the books. Keep in mind that your brain is like a sponge and that it takes time to process information. Limit your revision sessions to between 40 to 60 minutes and then stretch your legs and take a break for 10 minutes. Its also important to do more than just read as you'll soon lose focus. Include other activities like note-taking or mind mapping to keep you engaged. Whether you use revision guides like ours or choose to make your own, science has proven that one of the best things to do for learning is to sleep on it. Sleep helps to process information and transfer it from the short-term to the long-term memory, which is why planning is so important to A-level chemistry success. Were not going to wish you good luck with your revision, because lucks got nothing to do with it, thorough preparation does, and were confident that between our revision notes and your brains, you'll do just great! Lets get started. Bidentate ligands play a crucial role in coordination chemistry. They serve as molecules or ions with two donor atoms capable of binding to a central metal atom or ion at two distinct points. This blog will explore the diversity of bidentate ligands, shedding light on their structures, properties, and significance in various fields. To begin, lets define bidentate ligands and delve into the concept of chelation and the chelate effect. Bidentate ligands are molecules or ions featuring two donor atoms that can bind to a central metal atom or ion at two distinct points. This unique characteristic imparts enhanced stability and affinity to metal complexes, a phenomenon known as the chelate effect. Chelation and the Chelate Effect: Chelation occurs when a single ligand forms multiple bonds with a metal ion. The resulting complexes, known as chelates, exhibit increased stability compared to their monodentate counterparts. The chelate effect arises from the cooperative binding of bidentate or multidentate ligands. The examples of bidentate ligands are deeply discussed in given below: Formula: C2H4(NH2)2 Description: Symmetrical molecule with two amino groups.Formula: C10H8N2 Description: Consists of two pyridine rings linked at the 2nd position.Formula: C12H8N2 Description: Planar, aromatic ligand with two nitrogen atoms.Formula: C4H13N3 Description: Features three amino groups separated by ethylene linkers.Formula: C2O4 Description: Dianion with two carboxylate groups.Formula: C5H7O2 Description: Consists of a diketone structure.Formula: C3H2O4 Description: Dianion with two carboxylate groups separated by a methylene bridge.Formula: C7H5O3 Description: Derivative of salicylic acid with a carboxylate group.Formula: C2H5O Description: Ethyl group attached to an oxygen atom.Also Read: 20 Examples of Polydentate Ligands Bidentate ligands, molecules or ions with two donor atoms capable of binding to a central metal atom or ion at two distinct points, play a pivotal role in coordination chemistry. Their importance stems from various characteristics and applications, making them key players in the formation and stability of metal complexes. Here are some crucial aspects highlighting the significance of bidentate ligands: Enhanced Stability: Bidentate ligands contribute to the enhanced stability of metal complexes through chelation, a process where a ligand forms multiple bonds with a metal ion. The resulting chelates are often more stable than their monodentate counterparts, a phenomenon known as the chelate effect. This increased stability has profound implications in the design and synthesis of coordination compounds. Selective Metal Binding: The ability of bidentate ligands to bind to metal ions at two distinct points provides a level of selectivity in metal coordination. This selectivity is crucial in various applications, such as catalysis and bioinorganic chemistry, where specific interactions between ligands and metal ions are desired for optimal performance. Catalytic Activity: Bidentate ligands are commonly employed in catalysis, influencing reaction rates and selectivity. The chelating effect enhances the catalytic efficiency of metal complexes, making them valuable in industrial processes and laboratory-scale reactions. The controlled coordination environment provided by bidentate ligands contributes to the precision of catalytic systems. Biological and Medicinal Applications: In bioinorganic chemistry, bidentate ligands are prevalent in metalloenzymes and biomimetic catalysts. The structural and electronic properties of these ligands make them suitable for mimicking the active sites of biological systems. Additionally, metal complexes with bidentate ligands are explored for medicinal purposes, including drug delivery and imaging, owing to their controlled reactivity and potential therapeutic effects. Environmental Remediation: Bidentate ligands find applications in environmental remediation efforts. Metal complexes formed with these ligands can be utilized to remove or immobilize toxic metals from contaminated environments. The selective binding ability of bidentate ligands aids in the design of effective strategies for cleaning polluted water or soil. Structural Diversity: The diverse nature of bidentate ligands allows for the creation of a wide range of coordination geometries and structures. This structural diversity is valuable in tailoring the properties of metal complexes for specific purposes, ranging from magnetic materials to sensors and electronic devices. Versatility in Synthesis: Bidentate ligands are versatile in their synthesis and modification. This flexibility enables the fine-tuning of ligand properties, such as electronic and steric effects, to meet the requirements of a particular application. The ease of modification contributes to the adaptability of these ligands in various chemical contexts. Bidentate ligands enhance stability, provide selectivity in metal binding, and contribute to catalysis, biological processes, medicinal applications, environmental remediation, and structural diversity in coordination chemistry. Their unique characteristics make them indispensable tools in designing and synthesizing metal complexes with tailored properties for a wide array of scientific and industrial applications. Welcome to the ChemistryLibrary. This Living Library is a principal hub of the LibreTexts project, which is a multi-institutional collaborative venture to develop the next generation of open-access texts to improve postsecondary education at all levels of higher learning. The LibreTexts approach is highly collaborative where an Open Access textbook environment is under constant revision by students, faculty, and outside experts to supplant conventional paper-based books. Campus BookshelvesBookshelvesLearning Objects Home is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts. Ambidentate ligands are a type of ligand which can bond to the central atom in two places, but not at the same time SCN- and NO2- are good examples of ambidentate ligands.What are ambidentate ligands?To understand ambidentate ligands, one must first understand what a ligand is. A ligand is a molecule or ion (a functional group) that can bind to a central metal atom (which can be in a zero, negative, or positive oxidation state) this bonding usually involves the ligand donating one or more electron pairs. This means that ligands act as Lewis bases (because they accept a pair of electrons), and the central atom acts as a Lewis acid (because they accept a pair of electrons). All ligands must have at least one donor atom with an electron pair which can be used to form a covalent bond with the central atom. The reaction between a central metal ion and a ligand can be explained more simply in the reaction below:Ligands can be classified in a variety of ways such as: size, charge, and the number of electrons that are donated to the central metal ion. It is important to know that the size of a ligand is indicated by its cone angle. The cone angle of a ligand is the angle formed with the central metal atom this is better explained by the image below:Ligands also dictate the reactivity of the ligands themselves and the ligand substitution rates. Ambidentate ligands are ligands which can bond to the central atom in two places. This is because they have more than one donor atom which can coordinate. It is important to note that these ligands are capable of bonding to a central atom through two different atoms, but only bonds with one of them at a time. This type of ligand also tends to be linear in geometry.Examples of ambidentate ligandsSCN- is an example of an ambidentate ligand. This is because it can bond to a coordination centre through nitrogen as well as sulphur. The below image shows how SCN- can act as an ambidentate ligand. As you can see, SCN- can bond either through the sulphur atom or the nitrogen atom, but not at the same time.Another example of an ambidentate ligand is NO2-. This ion can bind to a central atom through either the nitrogen or one of the oxygen atoms, but again, not at the same time.Linkage IsomerismLinkage isomers are two (or more) compounds in which the donor atom is different (so, the connectivity between the atoms is different). Put more simply, the only difference between the two is what atoms in the ligand bind to the central ion. This type of isomerism can therefore only occur when the compound contains an ambidentate ligand. The image below shows linkage isomerism in the NO2 ligand. The two isomers have coordinated to a metal ion in two distinct ways.Different names are used to specify which atom has coordinated to the central metal ion. So, when NO2 binds with the O atom it is called nitro, but when it binds with the N atom it is called nitrito. There are many other examples of this naming convention. For example, then SCN- binds through the lone pair of electrons on the S atom, the complexes are called thiocyanate. When the ligand binds through the N atom, the complexes are called isothiocyanate.Further Reading //byjus.com/chemistry/ligands-complexity-of-coordination-compounds/ AnswerVerifiedHint: A ligand is an ion or molecule, which donates a couple of electrons to the vital steel atom or ion to shape a coordination complicated. The word ligand has come from a Latin word, which means bind. Ligands may be anions, cations, and impartial molecules. Ligands act as Lewis bases (donate electron pairs) and vital steel atoms regarded as Lewis acid (electron pair acceptor). The nature of bonding among steel to ligand varies from covalent bond to ionic bond.Complete answer: Bidentate ligand is a ligand that has "teeth" or atoms that coordinate without delay to the vital atom in a complex. An instance of a bidentate ligand is ethylenediamine. An unarranged molecule of ethylene diamine can shape bonds to a steel ion. The bonds are shaped among the steel ions and the nitrogen atoms of ethylene diamine. The shape of ethylenediamine may be proven under this is an instance of bidentate ligand: According to coordination chemistry, ligands may be defined as an ion or molecule which can bind to a central metal atom. Ligands are those elements that are negatively charged or neutral in nature. Ligands generally satisfy the primary valency of the coordination complexes. Ligands are regarded as Lewis bases, despite the fact that uncommon instances are recognized to contain Lewis acidic "ligands". Some of the common examples of bidentate ligands are ethylene diamine, oxalate etc. Note: Metals and metalloids are certain to ligands in nearly all circumstances, despite the fact that gaseous "naked" steel ions may be generated in an excessive vacuum. Ligands in a complex dictate the reactivity of the vital atom, which includes ligand substitution rates, the reactivity of the ligands themselves, and redox. Ligand choice is an important attention in lots of sensible areas, which includes bioorganic and medicinal chemistry, homogeneous catalysis, and environmental chemistry. Ligands play a vital role in the chemistry, particularly in coordination compounds. A ligand is a molecule or ion that can donate a pair of electrons to a central metal atom or ion. The donated electron pair forms coordinate bonds with the metal, forming coordination compounds. Ligands act as Lewis bases (electron pair donors), and the central atom acts as a Lewis acid (electron pair acceptor). The nature of metal-ligand bonding can range from covalent to ionic. Moreover, the metal-ligand bond order can range from one to three. [1-4] In nearly all situations, metals and metalloids form bonds with ligands. The ligand influences the reactivity of the central atom in a complex, ligand substitution rates, ligand reactivity, and redox properties. Selecting appropriate ligands is crucial in various practical fields, such as bioinorganic and medicinal chemistry, homogeneous catalysis, and environmental chemistry. The word ligand comes from Latin and means to bind. Ligands can be classified into different types based on the number of binding sites with the central metal atom, charge, and size. [1-4] Monodentate ligands, also known as unidentate ligands, form only one bond with a metal ion. It means they have a single donor atom capable of coordinating with the metal center. Some examples of monodentate ligands include water (H2O), ammonia (NH3), chloride ion (Cl), cyanide ion (CN), and pyridine (C5H5N). Because they bind to the center through one atom only, they are called monodentate, meaning one tooth. These ligands possess specific properties that make them useful in coordination chemistry. Firstly, their ability to form a single bond allows for the formation of simple complexes, making them relatively easy to study and manipulate. Monodentate ligands also tend to be highly selective in their binding, as they have a specific site on the metal ion where coordination occurs. Another essential property of monodentate ligands is their ability to increase the solubility and stability of metal complexes. By coordinating with the metal ion, they can prevent unwanted precipitation or decomposition reactions, ensuring the longevity of the complex. It is worth noting that while monodentate ligands can only form one bond with a metal ion, they can still participate in multiple coordination sites if multiple ligands are present. It allows for forming more complex structures, such as polymeric or macrocyclic compounds. Bidentate ligands are molecules or ions with two donor atoms capable of forming two bonds with a metal ion. They are commonly used in coordination chemistry to form stable complexes with transition metals. Some examples of bidentate ligands include ethylenediamine (en), oxalate, and acetylacetone (acac). Bidentate ligands are often called chelating ligands because they form a ring-like structure known as a chelate when coordinated with a metal ion. The term chelate comes from Greek, meaning claw. The binding affinity of a chelating system depends on the bite angle of chelating the angle. The chelate structure provides increased stability to the complex. It has been found that the chelate effect is predominantly an effect of entropy. Bidentate ligands also tend to have a flexible structure, allowing them to adopt different conformations when coordinating with the metal ion. Polydentate ligands, also known as multidentate ligands, can donate multiple electron pairs to a central metal ion in a coordination complex. These ligands have multiple binding sites, which allow them to form multiple bonds with the metal ion simultaneously. Molecules with three donor atoms are called tridentate, five are called pentadentate, and six are called hexadentate. The chelating effect is also observed in polydentate ligands. The resulting chelate structure enhances the stability of the coordination complex by reducing the chances of the ligand dissociating from the metal ion. Examples of polydentate ligands include diethylenetriamine (dien) and ethylenediaminetetraacetic acid (EDTA4-). Diethylenetriamine has three nitrogen atoms, which is an instance of bidentate ligand: According to coordination chemistry, ligands may be defined as an ion or molecule which can bind to a central metal atom. Ligands are those elements that are negatively charged or neutral in nature. Ligands generally satisfy the primary valency of the coordination complexes. Ligands are regarded as Lewis bases, despite the fact that uncommon instances are recognized to contain Lewis acidic "ligands". Some of the common examples of bidentate ligands are ethylene diamine, oxalate etc. Note: Metals and metalloids are certain to ligands in nearly all circumstances, despite the fact that gaseous "naked" steel ions may be generated in an excessive vacuum. Ligands in a complex dictate the reactivity of the vital atom, which includes ligand substitution rates, the reactivity of the ligands themselves, and redox. Ligand choice is an important attention in lots of sensible areas, which includes bioorganic and medicinal chemistry, homogeneous catalysis, and environmental chemistry. Ligands play a vital role in the chemistry, particularly in coordination compounds. A ligand is a molecule or ion that can donate a pair of electrons to a central metal atom or ion. The donated electron pair forms coordinate bonds with the metal, forming coordination compounds. Ligands act as Lewis bases (electron pair donors), and the central atom acts as a Lewis acid (electron pair acceptor). The nature of metal-ligand bonding can range from covalent to ionic. Moreover, the metal-ligand bond order can range from one to three. [1-4] In nearly all situations, metals and metalloids form bonds with ligands. The ligand influences the reactivity of the central atom in a complex, ligand substitution rates, ligand reactivity, and redox properties. Selecting appropriate ligands is crucial in various practical fields, such as bioinorganic and medicinal chemistry, homogeneous catalysis, and environmental chemistry. The word ligand comes from Latin and means to bind. Ligands can be classified into different types based on the number of binding sites with the central metal atom, charge, and size. [1-4] Monodentate ligands, also known as unidentate ligands, form only one bond with a metal ion. It means they have a single donor atom capable of coordinating with the metal center. Some examples of monodentate ligands include water (H2O), ammonia (NH3), chloride ion (Cl), cyanide ion (CN), and pyridine (C5H5N). Because they bind to the center through one atom only, they are called monodentate, meaning one tooth. These ligands possess specific properties that make them useful in coordination chemistry. Firstly, their ability to form a single bond allows for the formation of simple complexes, making them relatively easy to study and manipulate. Monodentate ligands also tend to be highly selective in their binding, as they have a specific site on the metal ion where coordination occurs. Another essential property of monodentate ligands is their ability to increase the solubility and stability of metal complexes. By coordinating with the metal ion, they can prevent unwanted precipitation or decomposition reactions, ensuring the longevity of the complex. It is worth noting that while monodentate ligands can only form one bond with a metal ion, they can still participate in multiple coordination sites if multiple ligands are present. It allows for forming more complex structures, such as polymeric or macrocyclic compounds. Bidentate ligands are molecules or ions with two donor atoms capable of forming two bonds with a metal ion. They are commonly used in coordination chemistry to form stable complexes with transition metals. Some examples of bidentate ligands include ethylenediamine (en), oxalate, and acetylacetone (acac). Bidentate ligands are often called chelating ligands because they form a ring-like structure known as a chelate when coordinated with a metal ion. The term chelate comes from Greek, meaning claw. The binding affinity of a chelating system depends on the bite angle of chelating the angle. The chelate structure provides increased stability to the complex. It has been found that the chelate effect is predominantly an effect of entropy. Bidentate ligands also tend to have a flexible structure, allowing them to adopt different conformations when coordinating with the metal ion. Polydentate ligands, also known as multidentate ligands, can donate multiple electron pairs to a central metal ion in a coordination complex. These ligands have multiple binding sites, which allow them to form multiple bonds with the metal ion simultaneously. Molecules with three donor atoms are called tridentate, five are called pentadentate, and six are called hexadentate. The chelating effect is also observed in polydentate ligands. The resulting chelate structure enhances the stability of the coordination complex by reducing the chances of the ligand dissociating from the metal ion. Examples of polydentate ligands include diethylenetriamine (dien) and ethylenediaminetetraacetic acid (EDTA4-). Diethylenetriamine has three nitrogen atoms, which is an instance of bidentate ligand: According to coordination chemistry, ligands may be defined as an ion or molecule which can bind to a central metal atom. Ligands are those elements that are negatively charged or neutral in nature. Ligands generally satisfy the primary valency of the coordination complexes. Ligands are regarded as Lewis bases, despite the fact that uncommon instances are recognized to contain Lewis acidic "ligands". Some of the common examples of bidentate ligands are ethylene diamine, oxalate etc. Note: Metals and metalloids are certain to ligands in nearly all circumstances, despite the fact that gaseous "naked" steel ions may be generated in an excessive vacuum. Ligands in a complex dictate the reactivity of the vital atom, which includes ligand substitution rates, the reactivity of the ligands themselves, and redox. Ligand choice is an important attention in lots of sensible areas, which includes bioorganic and medicinal chemistry, homogeneous catalysis, and environmental chemistry. Ligands play a vital role in the chemistry, particularly in coordination compounds. A ligand is a molecule or ion that can donate a pair of electrons to a central metal atom or ion. The donated electron pair forms coordinate bonds with the metal, forming coordination compounds. Ligands act as Lewis bases (electron pair donors), and the central atom acts as a Lewis acid (electron pair acceptor). The nature of metal-ligand bonding can range from covalent to ionic. Moreover, the metal-ligand bond order can range from one to three. [1-4] In nearly all situations, metals and metalloids form bonds with ligands. The ligand influences the reactivity of the central atom in a complex, ligand substitution rates, ligand reactivity, and redox properties. Selecting appropriate ligands is crucial in various practical fields, such as bioinorganic and medicinal chemistry, homogeneous catalysis, and environmental chemistry. The word ligand comes from Latin and means to bind. Ligands can be classified into different types based on the number of binding sites with the central metal atom, charge, and size. [1-4] Monodentate ligands, also known as unidentate ligands, form only one bond with a metal ion. It means they have a single donor atom capable of coordinating with the metal center. Some examples of monodentate ligands include water (H2O), ammonia (NH3), chloride ion (Cl), cyanide ion (CN), and pyridine (C5H5N). Because they bind to the center through one atom only, they are called monodentate, meaning one tooth. These ligands possess specific properties that make them useful in coordination chemistry. Firstly, their ability to form a single bond allows for the formation of simple complexes, making them relatively easy to study and manipulate. Monodentate ligands also tend to be highly selective in their binding, as they have a specific site on the metal ion where coordination occurs. Another essential property of monodentate ligands is their ability to increase the solubility and stability of metal complexes. By coordinating with the metal ion, they can prevent unwanted precipitation or decomposition reactions, ensuring the longevity of the complex. It is worth noting that while monodentate ligands can only form one bond with a metal ion, they can still participate in multiple coordination sites if multiple ligands are present. It allows for forming more complex structures, such as polymeric or macrocyclic compounds. Bidentate ligands are molecules or ions with two donor atoms capable of forming two bonds with a metal ion. They are commonly used in coordination chemistry to form stable complexes with transition metals. Some examples of bidentate ligands include ethylenediamine (en), oxalate, and acetylacetone (acac). Bidentate ligands are often called chelating ligands because they form a ring-like structure known as a chelate when coordinated with a metal ion. The term chelate comes from Greek, meaning claw. The binding affinity of a chelating system depends on the bite angle of chelating the angle. The chelate structure provides increased stability to the complex. It has been found that the chelate effect is predominantly an effect of entropy. Bidentate ligands also tend to have a flexible structure, allowing them to adopt different conformations when coordinating with the metal ion. Polydentate ligands, also known as multidentate ligands, can donate multiple electron pairs to a central metal ion in a coordination complex. These ligands have multiple binding sites, which allow them to form multiple bonds with the metal ion simultaneously. Molecules with three donor atoms are called tridentate, five are called pentadentate, and six are called hexadentate. The chelating effect is also observed in polydentate ligands. The resulting chelate structure enhances the stability of the coordination complex by reducing the chances of the ligand dissociating from the metal ion. Examples of polydentate ligands include diethylenetriamine (dien) and ethylenediaminetetraacetic acid (EDTA4-). Diethylenetriamine has three nitrogen atoms, which is an instance of bidentate ligand: According to coordination chemistry, ligands may be defined as an ion or molecule which can bind to a central metal atom. Ligands are those elements that are negatively charged or neutral in nature. Ligands generally satisfy the primary valency of the coordination complexes. Ligands are regarded as Lewis bases, despite the fact that uncommon instances are recognized to contain Lewis acidic "ligands". Some of the common examples of bidentate ligands are ethylene diamine, oxalate etc. Note: Metals and metalloids are certain to ligands in nearly all circumstances, despite the fact that gaseous "naked" steel ions may be generated in an excessive vacuum. Ligands in a complex dictate the reactivity of the vital atom, which includes ligand substitution rates, the reactivity of the ligands themselves, and redox. Ligand choice is an important attention in lots of sensible areas, which includes bioorganic and medicinal chemistry, homogeneous catalysis, and environmental chemistry. Ligands play a vital role in the chemistry, particularly in coordination compounds. A ligand is a molecule or ion that can donate a pair of electrons to a central metal atom or ion. The donated electron pair forms coordinate bonds with the metal, forming coordination compounds. Ligands act as Lewis bases (electron pair donors), and the central atom acts as a Lewis acid (electron pair acceptor). The nature of metal-ligand bonding can range from covalent to ionic. Moreover, the metal-ligand bond order can range from one to three. [1-4] In nearly all situations, metals and metalloids form bonds with ligands. The ligand influences the reactivity of the central atom in a complex, ligand substitution rates, ligand reactivity, and redox properties. Selecting appropriate ligands is crucial in various practical fields, such as bioinorganic and medicinal chemistry, homogeneous catalysis, and environmental chemistry. The word ligand comes from Latin and means to bind. Ligands can be classified into different types based on the number of binding sites with the central metal atom, charge, and size. [1-4] Monodentate ligands, also known as unidentate ligands, form only one bond with a metal ion. It means they have a single donor atom capable of coordinating with the metal center. Some examples of monodentate ligands include water (H2O), ammonia (NH3), chloride ion (Cl), cyanide ion (CN), and pyridine (C5H5N). Because they bind to the center through one atom only, they are called monodentate, meaning one tooth. These ligands possess specific properties that make them useful in coordination chemistry. Firstly, their ability to form a single bond allows for the formation of simple complexes, making them relatively easy to study and manipulate. Monodentate ligands also tend to be highly selective in their binding, as they have a specific site on the metal ion where coordination occurs. Another essential property of monodentate ligands is their ability to increase the solubility and stability of metal complexes. By coordinating with the metal ion, they can prevent unwanted precipitation or decomposition reactions, ensuring the longevity of the complex. It is worth noting that while monodentate ligands can only form one bond with a metal ion, they can still participate in multiple coordination sites if multiple ligands are present. It allows for forming more complex structures, such as polymeric or macrocyclic compounds. Bidentate ligands are molecules or ions with two donor atoms capable of forming two bonds with a metal ion. They are commonly used in coordination chemistry to form stable complexes with transition metals. Some examples of bidentate ligands include ethylenediamine (en), oxalate, and acetylacetone (acac). Bidentate ligands are often called chelating ligands because they form a ring-like structure known as a chelate when coordinated with a metal ion. The term chelate comes from Greek, meaning claw. The binding affinity of a chelating system depends on the bite angle of chelating the angle. The chelate structure provides increased stability to the complex. It has been found that the chelate effect is predominantly an effect of entropy. Bidentate ligands also tend to have a flexible structure, allowing them to adopt different conformations when coordinating with the metal ion. Polydentate ligands, also known as multidentate ligands, can donate multiple electron pairs to a central metal ion in a coordination complex. These ligands have multiple binding sites, which allow them to form multiple bonds with the metal ion simultaneously. Molecules with three donor atoms are called tridentate, five are called pentadentate, and six are called hexadentate. The chelating effect is also observed in polydentate ligands. The resulting chelate structure enhances the stability of the coordination complex by reducing the chances of the ligand dissociating from the metal ion. Examples of polydentate ligands include diethylenetriamine (dien) and ethylenediaminetetraacetic acid (EDTA4-). Diethylenetriamine has three nitrogen atoms, which is an instance of bidentate ligand: According to coordination chemistry, ligands may be defined as an ion or molecule which can bind to a central metal atom. Ligands are those elements that are negatively charged or neutral in nature. Ligands generally satisfy the primary valency of the coordination complexes. Ligands are regarded as Lewis bases, despite the fact that uncommon instances are recognized to contain Lewis acidic "ligands". Some of the common examples of bidentate ligands are ethylene diamine, oxalate etc. Note: Metals and metalloids are certain to ligands in nearly all circumstances, despite the fact that gaseous "naked" steel ions may be generated in an excessive vacuum. Ligands in a complex dictate the reactivity of the vital atom, which includes ligand substitution rates, the reactivity of the ligands themselves, and redox. Ligand choice is an important attention in lots of sensible areas, which includes bioorganic and medicinal chemistry, homogeneous catalysis, and environmental chemistry. Ligands play a vital role in the chemistry, particularly in coordination compounds. A ligand is a molecule or ion that can donate a pair of electrons to a central metal atom or ion. The donated electron pair forms coordinate bonds with the metal, forming coordination compounds. Ligands act as Lewis bases (electron pair donors), and the central atom acts as a Lewis acid (electron

